• Document: Шесть функций сложного процента это не так уж сложно! Вольнова Вера Александровна сертифицированный РОО оценщик недвижимости оценщик TEGoVA
  • Size: 921.01 KB
  • Uploaded: 2018-11-28 16:57:27
  • Status: Successfully converted


Some snippets from your converted document:

Шесть функций сложного процента – это не так уж сложно! Вольнова Вера Александровна сертифицированный РОО оценщик недвижимости оценщик TEGoVA Теория ОСНОВНЫЕ ПОНЯТИЯ PV – текущая стоимость (present value) FV - будущая стоимость (future value) PMT- платёж, взнос, выплата (payment) n - число периодов (год) i - ставка процента за период (годовая) k – кол. начислений за период (в год) Аннуитет - серия равномерных равновеликих платежей Самоамортизирующийся кредит – погашение производится равными по сумме платежами весь срок кредитования и включает часть долга и начисленные проценты При платежах раз в период и ставке за период (i) (n) При годовых платежах и годовой ставке (k=1) (i = i) (n = n) При ежемесячных платежах и годовой ставке (k=12) (i = i/k) (n = nk) 2 Теория СХЕМА ШЕСТИ ФУНКЦИЙ 3 Теория ПОЧЕМУ ФУНКЦИЙ ШЕСТЬ? 4 Теория ОСНОВНЫЕ ФОРМУЛЫ 1. Будущая стоимость единицы (сложный процент; сколько будет стоить то, что есть сегодня ) FV = PV (1+i)n 4. Текущая стоимость единицы (дисконтирование; сколько стоит сегодня то, что получим в будущем) функция, обратная первой Годовое или ежемесячное начисление процентов 5 Теория ОСНОВНЫЕ ФОРМУЛЫ 2. Будущая стоимость аннуитета (накопление единицы за период; накопление единицы за n периодов) (сколько получим в будущем, если вкладывать по 1 в каждый период) 2.1. (обычного) если платежи в конце каждого года (i = i) (n = n) 2.2. (авансового) если платежи в начале каждого года (i = i) (n = n+1) (-1) Годовое или ежемесячное начисление процентов 6 •Фактор фонда возмещения (сколько платить, чтобы получить 1) Теория ОСНОВНЫЕ ФОРМУЛЫ 3. Фактор фонда возмещения (периодический взнос на накопление фонда; сколько платить в каждый период, чтобы накопить известную сумму) функция, обратная второй 5. Текущая стоимость аннуитета (текущая стоимость единичного аннуитета; сколько сегодня стоит серия будущих выплат в каждый период) 5.1. (обычного) если платежи в конце каждого периода (i = i) (n = n) 5.2. (авансового) если платежи в начале каждого периода (i = i) (n = n-1) (+1) Годовое или ежемесячное начисление процентов 7 Теория ОСНОВНЫЕ ФОРМУЛЫ 6. Взнос за амортизацию единицы (периодический взнос на погашение кредита; какова величина платежей в каждый период для погашения взятой суммы) функция, обратная пятой При год

Recently converted files (publicly available):